Christopher DiPalma, Ningfei Wang, Takami Sato, and Qi Alfred Chen (UC Irvine)

Robust perception is crucial for autonomous vehicle security. In this work, we design a practical adversarial patch attack against camera-based obstacle detection. We identify that the back of a box truck is an effective attack vector. We also improve attack robustness by considering a variety of input frames associated with the attack scenario. This demo includes videos that show our attack can cause end-to-end consequences on a representative autonomous driving system in a simulator.

View More Papers

VISAS-Detecting GPS spoofing attacks against drones by analyzing camera's...

Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

As Strong As Its Weakest Link: How to Break...

Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Read More

Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton (University of Adelaide), Niels Samwel (Radboud University), Lejla Batina (Radboud University), Francesco Regazzoni (University of Amsterdam and ALaRI – USI), Markus Wagner (University of Adelaide), Yuval Yarom (University of Adelaide and Data61)

Read More

Demo #7: Automated Tracking System For LiDAR Spoofing Attacks...

Yulong Cao, Jiaxiang Ma, Kevin Fu (University of Michigan), Sara Rampazzi (University of Florida), and Z. Morley Mao (University of Michigan) Best Demo Award Runner-up ($200 cash prize)!

Read More