Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Cellular Vehicle-to-Everything (C-V2X) has been adopted by the FCC as the technology standard for safetyrelated transportation and vehicular communications in the US. C-V2X allows vehicles to self-manage the network in absence of a cellular base-station. Since C-V2X networks convey safety-critical messages, it is crucial to assess their security posture. This work contributes a novel set of Denial-of-Service (DoS) attacks on CV2X networks. The attacks are caused by adversarial resource block selection and vary in sophistication and efficiency. In particular, we consider “oblivious” adversaries that ignore recent transmission activity on resource blocks, “smart” adversaries that do monitor activity on each resource block, and “cooperative” adversaries that work together to ensure they attack different targets. We analyze and simulate these attacks to showcase their effectiveness. Assuming a fixed number of attackers, we show that at low vehicle density, smart and cooperative attacks can significantly impact network performance, while at high vehicle density, oblivious attacks are almost as effective as the more sophisticated attacks.

View More Papers

Generation of CAN-based Wheel Lockup Attacks on the Dynamics...

Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Read More

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

Detecting DolphinAttacks Based on Microphone Array

Guoming Zhang, Xiaoyu Ji (Zhejiang University)

Read More

EarArray: Defending against DolphinAttack via Acoustic Attenuation

Guoming Zhang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Xinfeng Li (Zhejiang University), Gang Qu (University of Maryland), Wenyuan Xu (Zhejing University)

Read More