Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

The increasing amount of electric vehicles and a growing electric vehicle ecosystem is becoming a highly heterogeneous environment with a large number of participants that interact and communicate. Finding a charging station, performing vehicle-to-vehicle charging or processing payments poses privacy threats to customers as their location and habits can be traced. In this paper, we present a privacy-preserving solution for grid-to-vehicle charging, vehicle-to-grid charging and vehicle to-vehicle charging, that allows for finding the right charging option in a competitive market environment and that allows for built-in payments with adjustable and limited risk for both, producers and consumers of electricity. The proposed approach builds on blockchain technology and extends a state-of-the-art protocol with payments, while still preserving the privacy of the users. The protocol is evaluated with respect to privacy, risk and scalability. It is shown that pseudonymity and location privacy (against third parties) is guaranteed throughout the protocol, even beyond a single protocol session. In addition, both, risk and scalability can be adjusted based on the used blockchain.

View More Papers

Favocado: Fuzzing the Binding Code of JavaScript Engines Using...

Sung Ta Dinh (Arizona State University), Haehyun Cho (Arizona State University), Kyle Martin (North Carolina State University), Adam Oest (PayPal, Inc.), Kyle Zeng (Arizona State University), Alexandros Kapravelos (North Carolina State University), Gail-Joon Ahn (Arizona State University and Samsung Research), Tiffany Bao (Arizona State University), Ruoyu Wang (Arizona State University), Adam Doupe (Arizona State University),…

Read More

User Expectations and Understanding of Encrypted DNS Settings

Alexandra Nisenoff, Nick Feamster, Madeleine A Hoofnagle†, Sydney Zink. (University of Chicago and †Northwestern)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More