Liang Wang, Hyojoon Kim, Prateek Mittal, Jennifer Rexford (Princeton University)

In conventional DNS, or Do53, requests and responses are sent in cleartext. Thus, DNS recursive resolvers or any on-path adversaries can access privacy-sensitive information. To address this issue, several encryption-based approaches (e.g., DNS-over-HTTPS) and proxy-based approaches (e.g., Oblivious DNS) were proposed. However, encryption-based approaches put too much trust in recursive resolvers. Proxy-based approaches can help hide the client’s identity, but sets a higher deployment barrier while also introducing noticeable performance overhead. We propose PINOT, a packet-header obfuscation system that runs entirely in the data plane of a programmable network switch, which provides a lightweight, low-deployment-barrier anonymization service for clients sending and receiving DNS packets. PINOT does not require any modification to the DNS protocol or additional client software installation or proxy setup. Yet, it can also be combined with existing approaches to provide stronger privacy guarantees. We implement a PINOT prototype on a commodity switch, deploy it in a campus network, and present results on protecting user identity against public DNS services.

View More Papers

Deceptive Deletions for Protecting Withdrawn Posts on Social Media...

Mohsen Minaei (Visa Research), S Chandra Mouli (Purdue University), Mainack Mondal (IIT Kharagpur), Bruno Ribeiro (Purdue University), Aniket Kate (Purdue University)

Read More

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga, Orestis Floros, Benoit Baudry, Martin Monperrus (KTH Royal Institute of Technology), Oscar Vera Perez (Univ Rennes, Inria, CNRS, IRISA)

Read More

Data Analytics and Expert Judgment in Time of Crisis:...

Igor Linkov, PhD Senior Science and Technology Manager, US Army Engineer Research and Development Center; Senior Data Analyst (on detail), FEMA/HHS R1 COVID Task Force; Adjunct Professor, Carnegie Mellon University

Read More

Towards Understanding and Detecting Cyberbullying in Real-world Images

Nishant Vishwamitra (University at Buffalo), Hongxin Hu (University at Buffalo), Feng Luo (Clemson University), Long Cheng (Clemson University)

Read More