Sayak Saha Roy, Unique Karanjit, Shirin Nilizadeh (The University of Texas at Arlington)

Twitter maintains a blackbox approach for detecting malicious URLs shared on its platform. In this study, we evaluate the efficiency of their detection mechanism against newer phishing and drive-by download threats posted on the website over three different time periods of the year. Our findings indicate that several threats remained undetected by Twitter, with the majority of them originating from nine different free website hosting services. These URLs targeted 19 popular organizations and also distributed malicious files from 9 different threat categories. Moreover, the malicious websites hosted under these services were also less likely to get detected by URL scanning tools than other similar threats hosted elsewhere, and were accessible on their respective domains for a much longer duration. We believe that the aforementioned features, combined with the ease of access (drag and drop website creating interface, up-to-date SSL certification, reputed domain, etc.) provides attackers a fast and convenient way to create malicious attacks using these services. On the other hand, we also observed that the majority of the URLs which were actually detected by Twitter remained active on the platform throughout our study, allowing them to be easily distributed across the platform. Also, several benign websites in our dataset were detected by Twitter as being malicious. We hypothesize that this is caused due to a blocklisting procedure used by Twitter, which detects all URLs originating from certain domains, irrespective of their content. Thus, our results identify a family of potent threats, which are distributed freely on Twitter, and are also not detected by the majority of URL scanning tools, or even the services which host them, thus making the need for a more thorough URL blocking approach from Twitter’s end more apparent.

View More Papers

PyPANDA: Taming the PANDAmonium of Whole System Dynamic Analysis

Luke Craig, Tim Leek (MIT Lincoln Laboratory), Andrew Fasano, Tiemoko Ballo (MIT Lincoln Laboratory, Northeastern University), Brendan Dolan-Gavitt (New York University), William Robertson (Northeastern University)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Shipping security at scale in the Chrome browser

Adriana Porter Felt (Director of Engineering for Chrome)

Read More