Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Mutation analysis is an effective technique to evaluate a test suite adequacy in terms of revealing unforeseen bugs in software. Traditional source- or IR-level mutation analysis is not applicable to the software only available in binary format. This paper proposes a practical binary mutation analysis via binary rewriting, along with a rich set of mutation operators to represent more realistic bugs. We implemented our approach using two state-of-the-art binary rewriting tools and evaluated its effectiveness and scalability by applying them to SPEC CPU benchmarks. Our analysis revealed that the richer mutation operators contribute to generating more diverse mutants, which, compared to previous works leads to a higher mutation score for the test harness. We also conclude that the reassembleable disassembly rewriting yields better scalability in comparison to lifting to an intermediate representation and performing a full translation.

View More Papers

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More

Finding 1-Day Vulnerabilities in Trusted Applications using Selective Symbolic...

Marcel Busch (Friedrich-Alexander-Universität Erlangen-Nürnberg), Kalle Dirsch (Friedrich-Alexander-Universität Erlangen-Nürnberg)

Read More

Similarity Metric Method for Binary Basic Blocks of Cross-Instruction...

Xiaochuan Zhang (Artificial Intelligence Research Center, National Innovation Institute of Defense Technology), Wenjie Sun (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianmin Pang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Fudong Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Zhen Ma (State Key Laboratory of Mathematical Engineering and Advanced…

Read More

A Heuristic Approach to Detect Opaque Predicates that Disrupt...

Yu-Jye Tung (University of California, Irvine), Ian Harris (University of California Irvine)

Read More