Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Mutation analysis is an effective technique to evaluate a test suite adequacy in terms of revealing unforeseen bugs in software. Traditional source- or IR-level mutation analysis is not applicable to the software only available in binary format. This paper proposes a practical binary mutation analysis via binary rewriting, along with a rich set of mutation operators to represent more realistic bugs. We implemented our approach using two state-of-the-art binary rewriting tools and evaluated its effectiveness and scalability by applying them to SPEC CPU benchmarks. Our analysis revealed that the richer mutation operators contribute to generating more diverse mutants, which, compared to previous works leads to a higher mutation score for the test harness. We also conclude that the reassembleable disassembly rewriting yields better scalability in comparison to lifting to an intermediate representation and performing a full translation.

View More Papers

o-glassesX: Compiler Provenance Recovery with Attention Mechanism from a...

Yuhei Otsubo (National Police Agency, Tokyo, Japan), Akira Otsuka (Institute of information Security, Japan), Mamoru Mimura (National Defense Academy, Japan), Takeshi Sakaki (The University of Tokyo, Japan), Hiroshi Ukegawa (National Police Agency, Tokyo, Japan)

Read More

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

Evaluating Personal Data Control In Mobile Applications Using Heuristics

Alain Giboin (UCA, INRIA, CNRS, I3S), Karima Boudaoud (UCA, CNRS, I3S), Patrice Pena (Userthink), Yoann Bertrand (UCA, CNRS, I3S), Fabien Gandon (UCA, INRIA, CNRS, I3S)

Read More