Tracy Tam, Asha Rao, and Joanne Hall (RMIT)

COVID19 has made small businesses around the world rapidly adopt new online sales channels and tools. In this digital push for survival, the cybersecurity of the new systems has likely been forgotten. An existing global cybersecurity skills shortage means traditional individualised security assessments for these newly digital businesses are not practical. This paper proposes a web based self-assessment system (SE-CAP) to enable small business owners to conduct their own cybersecurity assessments. Designed with rapid deployability in mind, SE-CAP uses proven web based technologies to deliver a new solution to help small businesses become cyber-safe. The design of SE-CAP takes into account small business issues around record keeping, time constraints and poor technical literacy. The generic nature of the system allows SE-CAP’s host organisation to customise and extend the self-assessment system beyond its initial scope. Challenges with industry cybersecurity knowledge gaps prevent SE-CAP’s completeness. However, these gaps could be filled, in the interim, by the host organisation.

View More Papers

Practical Non-Interactive Searchable Encryption with Forward and Backward Privacy

Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

Read More

Demo #10: Security of Deep Learning based Automated Lane...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More