Ritajit Majumdar (Indian Statistical Institute), Sanchari Das (University of Denver)

Quantum computers are considered a blessing to the dynamic technological world that promises to solve complex problems much faster than their known classical counterparts. Such computational power imposes critical threats on modern cryptography where it has been proven that asymmetric key cryptosystem will be rendered useless in a quantum world. However, we can utilize such a powerful mechanism for improving computer security by implementing such technology to solve complex data security problems such as authentication, secrets management, and others. Mainly, Quantum Authentication (QA) is an emerging concept in computer security that creates robust authentication for organizations, systems, and individuals. To delve deeper into the concept, for this research, we have further investigated QA through a detailed systematic literature review done on a corpus of N = 859 papers. We briefly discuss the major protocols used by various papers to achieve QA, and also note the distribution of papers using those protocols. We analyzed the technological limitations mentioned by previous researchers and highlighted the lack of human-centered solutions for such modern inventions. We emphasize the importance of research in the user aspect of QA to make the users aware of its potential advantages and disadvantages as we move to the quantum age.

View More Papers

Securing CAN Traffic on J1939 Networks

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

A Devil of a Time: How Vulnerable is NTP...

Yarin Perry (The Hebrew University of Jerusalem), Neta Rozen-Schiff (The Hebrew University of Jerusalem), Michael Schapira (The Hebrew University of Jerusalem)

Read More

TASE: Reducing Latency of Symbolic Execution with Transactional Memory

Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

Read More