Leonardo Babun (Florida International University), Amit Kumar Sikder (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

In smart environments such as smart homes and offices, the interaction between devices, users, and apps generate abundant data. Such data contain valuable forensic information about events and activities occurring in the smart environment. Nonetheless, current smart platforms do not provide any digital forensic capability to identify, trace, store, and analyze the data produced in these environments. To fill this gap, in this paper, we introduce VeritaS, a novel and practical digital forensic capability for the smart environment. VeritaS has two main components: Collector and Analyzer. The Collector implements mechanisms to automatically collect forensically-relevant data from the smart environment. Then, in the event of a forensic investigation, the Analyzer uses a First Order Markov Chain model to extract valuable and usable forensic information from the collected data. VeritaS then uses the forensic information to infer activities and behaviors from users, devices, and apps that violate the security policies defined for the environment. We implemented and tested VeritaS in a realistic smart office environment with 22 smart devices and sensors that generated 84209 forensically-valuable incidents. The evaluation shows that VeritaS achieves over 95% of accuracy in inferring different anomalous activities and forensic behaviors within the smart environment. Finally, VeritaS is extremely lightweight, yielding no overhead on the devices and minimal overhead in the backend resources (i.e., the cloud servers).

View More Papers

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More

Towards a TEE-based V2V Protocol for Connected and Autonomous...

Mohit Kumar Jangid (Ohio State University) and Zhiqiang Lin (Ohio State University)

Read More

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More