Leonardo Babun (Florida International University), Amit Kumar Sikder (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

In smart environments such as smart homes and offices, the interaction between devices, users, and apps generate abundant data. Such data contain valuable forensic information about events and activities occurring in the smart environment. Nonetheless, current smart platforms do not provide any digital forensic capability to identify, trace, store, and analyze the data produced in these environments. To fill this gap, in this paper, we introduce VeritaS, a novel and practical digital forensic capability for the smart environment. VeritaS has two main components: Collector and Analyzer. The Collector implements mechanisms to automatically collect forensically-relevant data from the smart environment. Then, in the event of a forensic investigation, the Analyzer uses a First Order Markov Chain model to extract valuable and usable forensic information from the collected data. VeritaS then uses the forensic information to infer activities and behaviors from users, devices, and apps that violate the security policies defined for the environment. We implemented and tested VeritaS in a realistic smart office environment with 22 smart devices and sensors that generated 84209 forensically-valuable incidents. The evaluation shows that VeritaS achieves over 95% of accuracy in inferring different anomalous activities and forensic behaviors within the smart environment. Finally, VeritaS is extremely lightweight, yielding no overhead on the devices and minimal overhead in the backend resources (i.e., the cloud servers).

View More Papers

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

Read More

Uncovering Cross-Context Inconsistent Access Control Enforcement in Android

Hao Zhou (The Hong Kong Polytechnic University), Haoyu Wang (Beijing University of Posts and Telecommunications), Xiapu Luo (The Hong Kong Polytechnic University), Ting Chen (University of Electronic Science and Technology of China), Yajin Zhou (Zhejiang University), Ting Wang (Pennsylvania State University)

Read More

VPNInspector: Systematic Investigation of the VPN Ecosystem

Reethika Ramesh (University of Michigan), Leonid Evdokimov (Independent), Diwen Xue (University of Michigan), Roya Ensafi (University of Michigan)

Read More

A Study on Security and Privacy Practices in Danish...

Asmita Dalela (IT University of Copenhagen), Saverio Giallorenzo (Department of Computer Science and Engineering - University of Bologna), Oksana Kulyk (ITU Copenhagen), Jacopo Mauro (University of Southern Denmark), Elda Paja (IT University of Copenhagen)

Read More