Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Path tracing tools, such as traceroute, are simple yet fundamental network debugging tools for network operators to detect and fix network failures. Unfortunately, adversaries can also use such tools to retrieve previously unknown network topology information which is key to realizing sophisticated Denial-of-Service attacks, such as Link Flooding Attacks (LFAs), more efficiently. Over the last few years, several network obfuscation defenses have been proposed to proactively mitigate LFAs by exposing virtual (fake) topologies that conceal potential bottleneck network links from adversaries. However, to date there has been no comprehensive and systematic analysis of the level of security and utility their virtual topologies offer. A critical analysis is thus a necessary step towards better understanding their limitations and building stronger and more practical defenses against LFAs.

In this paper, we first conduct a security analysis of the three state-of-the-art network obfuscation defenses. Our analysis reveals four important, common limitations that can significantly decrease the security and utility of their virtual topologies. Motivated by our findings, we present EqualNet, a secure and practical proactive defense for long-term network topology obfuscation that alleviates LFAs within a network domain. EqualNet aims to equalize tracing flow distributions over nodes and links so that adversaries are unable to distinguish which of them are the most important ones, thus significantly increasing the cost of performing LFAs. Meanwhile, EqualNet preserves subnet information, helping network operators who use path tracing tools to debug their networks. To demonstrate its feasibility, we implement a full prototype of it using Software-Defined Networking (SDN) and perform extensive evaluations both in software and hardware. Our results show that EqualNet is effective at equalizing the tracing flow distributions of small, medium and large networks even when only a small number of routers within the network support SDN. Finally, we analyze the security of EqualNet against a wide variety of attacks.

View More Papers

Get a Model! Model Hijacking Attack Against Machine Learning...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Demo #12: Too Afraid to Drive: Systematic Discovery of...

Ziwen Wan (UC Irvine), Junjie Shen (UC Irvine), Jalen Chuang (UC Irvine), Xin Xia (UCLA), Joshua Garcia (UC Irvine), Jiaqi Ma (UCLA) and Qi Alfred Chen (UC Irvine)

Read More

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More

PMTUD is not Panacea: Revisiting IP Fragmentation Attacks against...

Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Baojun Liu (Tsinghua University), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Qiushi Yang (QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Haixin Duan…

Read More