Zu-Ming Jiang (Tsinghua University), Jia-Ju Bai (Tsinghua University), Kangjie Lu (University of Minnesota), Shi-Min Hu (Tsinghua University)

Fuzzing is popular for bug detection and vulnerability discovery nowadays. To adopt fuzzing for concurrency problems like data races, several recent concurrency fuzzing approaches consider concurrency information of program execution, and explore thread interleavings by affecting threads scheduling at runtime. However, these approaches are still limited in data-race detection. On the one hand, they fail to consider the execution contexts of thread interleavings, which can miss real data races in specific runtime contexts. On the other hand, they perform random thread-interleaving exploration, which frequently repeats already covered thread interleavings and misses many infrequent thread interleavings.

In this paper, we develop a novel concurrency fuzzing framework named CONZZER, to effectively explore thread interleavings and detect hard-to-find data races. The core of CONZZER is a context-sensitive and directional concurrency fuzzing approach for thread-interleaving exploration, with two new techniques. First, to ensure context sensitivity, we propose a new concurrencycoverage metric, concurrent call pair, to describe thread interleavings with runtime calling contexts. Second, to directionally explore thread interleavings, we propose an adjacency-directed mutation to generate new possible thread interleavings with already covered thread interleavings and then use a breakpoint-control method to attempt to actually cover them at runtime. With these two techniques, this concurrency fuzzing approach can effectively cover infrequent thread interleavings with concrete context information, to help discover hard-to-find data races. We have evaluated CONZZER on 8 user-level applications and 4 kernel-level filesystems, and found 95 real data races. We identify 75 of these data races to be harmful and send them to related developers, and 44 have been confirmed. We also compare CONZZER to existing fuzzing tools, and CONZZER continuously explores more thread interleavings and finds many real data races missed by these tools.

View More Papers

Packet-Level Open-World App Fingerprinting on Wireless Traffic

Jianfeng Li (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Hao Zhou (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Ting Wang (Penn State), Yangyang Liu (The Hong Kong Polytechnic University), Xiaobo Ma (Xi'an Jiaotong University)

Read More

The Truth Shall Set Thee Free: Enabling Practical Forensic...

Leonardo Babun (Florida International University), Amit Kumar Sikder (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Read More

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More