Nishat Koti (IISc Bangalore), Arpita Patra (IISc Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (IISc, Bangalore)

Mixing arithmetic and boolean circuits to perform privacy-preserving machine learning has become increasingly popular. Towards this, we propose a framework for the case of four parties with at most one active corruption called Tetrad.

Tetrad works over rings and supports two levels of security, fairness and robustness. The fair multiplication protocol costs 5 ring elements, improving over the state-of-the-art Trident (Chaudhari et al. NDSS'20). A key feature of Tetrad is that robustness comes for free over fair protocols. Other highlights across the two variants include (a) probabilistic truncation without overhead, (b) multi-input multiplication protocols, and (c) conversion protocols to switch between the computational domains, along with a tailor-made garbled circuit approach.

Benchmarking of Tetrad for both training and inference is conducted over deep neural networks such as LeNet and VGG16. We found that Tetrad is up to 4 times faster in ML training and up to 5 times faster in ML inference. Tetrad is also lightweight in terms of deployment cost, costing up to 6 times less than Trident.

View More Papers

Clarion: Anonymous Communication from Multiparty Shuffling Protocols

Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

Read More

Fuzzing: A Tale of Two Cultures

Andreas Zeller (CISPA Helmholtz Center for Information Security)

Read More

Demystifying Local Business Search Poisoning for Illicit Drug Promotion

Peng Wang (Indiana University Bloomington), Zilong Lin (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More