Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Model inversion reverse-engineers input samples from a given model, and hence poses serious threats to information confidentiality. We propose a novel inversion technique based on StyleGAN, whose generator has a special architecture that forces the decomposition of an input to styles of various granularities such that the model can learn them separately in training. During sample generation, the generator transforms a latent value to parameters controlling these styles to compose a sample. In our inversion, given a target label of some subject model to invert (e.g., a private face based identity recognition model), our technique leverages a StyleGAN trained on public data from the same domain (e.g., a public human face dataset), uses the gradient descent or genetic search algorithm, together with distribution based clipping, to find a proper parameterization of the styles such that the generated sample is correctly classified to the target label (by the subject model) and recognized by humans. The results show that our inverted samples have high fidelity, substantially better than those by existing state-of-the-art techniques.

View More Papers

Testability Tarpits: the Impact of Code Patterns on the...

Feras Al Kassar (SAP Security Research), Giulia Clerici (SAP Security Research), Luca Compagna (SAP Security Research), Davide Balzarotti (EURECOM), Fabian Yamaguchi (ShiftLeft Inc)

Read More

Demo #7: A Simulator for Cooperative and Automated Driving...

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm Technologies Inc), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi (Telecom Paris - Institut Polytechnique de Paris), Wafa Ben Jaballah (Thales) and Jonathan Petit (Qualcomm Technologies Inc)

Read More

Fuzzing: A Tale of Two Cultures

Andreas Zeller (CISPA Helmholtz Center for Information Security)

Read More