Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of Technology), Jun Xu (Stevens Institute of Technology, University of Utah)

Embedded devices are ubiquitous. However, preliminary evidence shows that attack mitigations protecting our desktops/servers/phones are missing in embedded devices, posing a significant threat to embedded security. To this end, this paper presents an in-depth study on the adoption of common attack mitigations on embedded devices. Precisely, it measures the presence of standard mitigations against memory corruptions in over 10k Linux-based firmware of deployed embedded devices.

The study reveals that embedded devices largely omit both user-space and kernel-level attack mitigations. The adoption rates on embedded devices are multiple times lower than their desktop counterparts. An equally important observation is that the situation is not improving over time. Without changing the current practices, the attack mitigations will remain missing, which may become a bigger threat in the upcoming IoT era.

Throughout follow-up analyses, we further inferred a set of factors possibly contributing to the absence of attack mitigations. The exemplary ones include massive reuse of non-protected software, lateness in upgrading outdated kernels, and restrictions imposed by automated building tools. We envision these will turn into insights towards improving the adoption of attack mitigations on embedded devices in the future.

View More Papers

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

FANDEMIC: Firmware Attack Construction and Deployment on Power Management...

Ryan Tsang (University of California, Davis), Doreen Joseph (University of California, Davis), Qiushi Wu (University of California, Davis), Soheil Salehi (University of California, Davis), Nadir Carreon (University of Arizona), Prasant Mohapatra (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More