Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Software vulnerabilities are one of the major threats to computer security and have caused substantial damage over the past decades. Consequently, numerous techniques have been proposed to mitigate the risk of exploitation of vulnerable programs. One of the most relevant defense mechanisms is Control-Flow Integrity (CFI): multiple variants have been introduced and extensively discussed in academia as well as deployed in the industry. However, it is hard to compare the security guarantees of these implementations as existing metrics (such as AIR) do not consider the different usefulness to the attacker of different basic blocks, which are the fundamental components that constitute the code of any application.

This paper introduces BlockInsulation and CFGInsulation, novel metrics designed to overcome this limitation by modeling the usefulness of basic blocks for an attacker trying to traverse the program’s control-flow graph. Moreover, we propose a new CFI policy generator, named NumCFI, which is orthogonal to existing policy generators and prevents the attacker from taking shortcuts from vulnerable code to a system call instruction. We evaluate NumCFI, as well as a number of other CFI policy generators, using BlockInsulation, CFGInsulation, and existing metrics. Lastly, we describe l+tCFI, our implementation that combines NumCFI and an existing label-based policy, with a performance overhead of just 1.27%.

View More Papers

Log4shell: Redefining the Web Attack Surface

Douglas Everson (Clemson University), Long Cheng (Clemson University), and Zhenkai Zhang (Clemson University)

Read More

Uncovering Cross-Context Inconsistent Access Control Enforcement in Android

Hao Zhou (The Hong Kong Polytechnic University), Haoyu Wang (Beijing University of Posts and Telecommunications), Xiapu Luo (The Hong Kong Polytechnic University), Ting Chen (University of Electronic Science and Technology of China), Yajin Zhou (Zhejiang University), Ting Wang (Pennsylvania State University)

Read More

DrawnApart: A Deep-Learning Enhanced GPU Fingerprinting Technique

Naif Mehanna (University of Lille, CNRS, Inria), Tomer Laor (Ben-Gurion University of the Negev)

Read More

WIP: On Robustness of Lane Detection Models to Physical-World...

Takami Sato (UC Irvine) and Qi Alfred Chen (UC Irvine)

Read More