Martin Schwarzl (Graz University of Technology), Erik Kraft (Graz University of Technology), Moritz Lipp (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Memory utilization can be reduced by merging identical memory blocks into copy-on-write mappings. Previous work showed that this so-called memory deduplication can be exploited in local attacks to break ASLR, spy on other programs, and determine the presence of data, i.e., website images. All these attacks exploit memory deduplication across security domains, which in turn was disabled. However, within a security domain or on an isolated system with no untrusted local access, memory deduplication is still not considered a security risk and was recently re-enabled on Windows by default.

In this paper, we present the first fully remote memory-deduplication attacks. Unlike previous attacks, our attacks require no local code execution. Consequently, we can disclose memory contents from a remote server merely by sending and timing HTTP/1 and HTTP/2 network requests. We demonstrate our attacks on deduplication both on Windows and Linux and attack widely used server software such as Memcached and InnoDB. Our side channel leaks up to 34.41B/h over the internet, making it faster than comparable remote memory-disclosure channels. We showcase our remote memory-deduplication attack in three case studies: First, we show that an attacker can disclose the presence of data in memory on a server running Memcached. We show that this information disclosure channel can also be used for fingerprinting and detect the correct libc version over the internet in 166.51s. Second, in combination with InnoDB, we present an information disclosure attack to leak MariaDB database records. Third, we demonstrate a fully remote KASLR break in less than 4 minutes allowing to derandomize the kernel image of a virtual machine over the Internet, i.e., 14 network hops away. We conclude that memory deduplication must also be considered a security risk if only applied within a single security domain.

View More Papers

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More

DITTANY: Strength-Based Dynamic Information Flow Analysis Tool for x86...

Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Read More

FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Let’s Authenticate: Automated Certificates for User Authentication

James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University), Kyler Gates (Brigham Young University), Stephen Lambert (Brigham Young University), Christopher McClain (Brigham Young University), Parker Nichols (Brigham Young University), Daniel Zappala (Brigham Young University)

Read More