Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Deep neural networks have achieved remarkable success on a variety of mission-critical tasks. However, recent studies show that deep neural networks are vulnerable to backdoor attacks, where the attacker releases backdoored models that behave normally on benign samples but misclassify any trigger-imposed samples to a target label. Unlike adversarial examples, backdoor attacks manipulate both the inputs and the model, perturbing samples with the trigger and injecting backdoors into the model. In this paper, we propose a novel attention-based evasive backdoor attack, dubbed ATTEQ-NN. Different from existing works that arbitrarily set the trigger mask, we carefully design an attention-based trigger mask determination framework, which places the trigger at the crucial region with the most significant influence on the prediction results. To make the trigger-imposed samples appear more natural and imperceptible to human inspectors, we introduce a Quality-of-Experience (QoE) term into the loss function of trigger generation and carefully adjust the transparency of the trigger. During the process of iteratively optimizing the trigger generation and the backdoor injection components, we propose an alternating retraining strategy, which is shown to be effective in improving the clean data accuracy and evading some model-based defense approaches.

We evaluate ATTEQ-NN with extensive experiments on VGG- Flower, CIFAR-10, GTSRB, and CIFAR-100 datasets. The results show that ATTEQ-NN can increase the attack success rate by as high as 82% over baselines when the poison ratio is low while achieving a high QoE of the backdoored samples. We demonstrate that ATTEQ-NN reaches an attack success rate of more than 41.7% in the physical world under different lighting conditions and shooting angles. ATTEQ-NN preserves an attack success rate of more than 92.5% even if the original backdoored model is fine-tuned with clean data. Our user studies show that the backdoored samples generated by ATTEQ-NN are indiscernible under visual inspections. ATTEQ-NN is shown to be evasive to state-of-the-art defense methods, including model pruning, NAD, STRIP, NC, and MNTD.

View More Papers

Generating Test Suites for GPU Instruction Sets through Mutation...

Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Read More

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna and Antonin Durey (Univ. Lille / Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (CNRS, Univ. Lille, Inria Lille), Clémentine Maurice (CNRS), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille / Inria / IUF), Walter Rudametkin (Univ. Lille / Inria), Yuval…

Read More

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More