Junhao Zhou (Xi'an Jiaotong University), Yufei Chen (Xi'an Jiaotong University), Chao Shen (Xi'an Jiaotong University), Yang Zhang (CISPA Helmholtz Center for Information Security)

While machine learning (ML) has made tremendous progress during the past decade, recent research has shown that ML models are vulnerable to various security and privacy attacks. So far, most of the attacks in this field focus on discriminative models, represented by classifiers. Meanwhile, little attention has been paid to the security and privacy risks of generative models, such as generative adversarial networks (GANs). In this paper, we propose the first set of training dataset property inference attacks against GANs. Concretely, the adversary aims to infer the macro-level training dataset property, i.e., the proportion of samples used to train a target GAN with respect to a certain attribute. A successful property inference attack can allow the adversary to gain extra knowledge of the target GAN's training dataset, thereby directly violating the intellectual property of the target model owner. Also, it can be used as a fairness auditor to check whether the target GAN is trained with a biased dataset. Besides, property inference can serve as a building block for other advanced attacks, such as membership inference. We propose a general attack pipeline that can be tailored to two attack scenarios, including the full black-box setting and partial black-box setting. For the latter, we introduce a novel optimization framework to increase the attack efficacy. Extensive experiments over four representative GAN models on five property inference tasks show that our attacks achieve strong performance. In addition, we show that our attacks can be used to enhance the performance of membership inference against GANs.

View More Papers

ScriptChecker: To Tame Third-party Script Execution With Task Capabilities

Wu Luo (Peking University), Xuhua Ding (Singapore Management University), Pengfei Wu (School of Computing, National University of Singapore), Xiaolei Zhang (Peking University), Qingni Shen (Peking University), Zhonghai Wu (Peking University)

Read More

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More

RVPLAYER: Robotic Vehicle Forensics by Replay with What-if Reasoning

Hongjun Choi (Purdue University), Zhiyuan Cheng (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More