Linsheng Liu (George Washington University), Daniel S. Roche (United States Naval Academy), Austin Theriault (George Washington University), Arkady Yerukhimovich (George Washington University)

Recent years have seen a strong uptick in both the prevalence and real-world consequences of false information spread through online platforms. At the same time, encrypted messaging systems such as WhatsApp, Signal, and Telegram, are rapidly gaining popularity as users seek increased privacy in their digital lives.

The challenge we address is how to combat the viral spread of misinformation without compromising privacy. Our FACTS system tracks user complaints on messages obliviously, only revealing the message's contents and originator once sufficiently many complaints have been lodged.

Our system is *private*, meaning it does not reveal anything about the senders or contents of messages which have received few or no complaints; *secure*, meaning there is no way for a malicious user to evade the system or gain an outsized impact over the complaint system; and *scalable*, as we demonstrate excellent practical efficiency for up to millions of complaints per day.

Our main technical contribution is a new collaborative counting Bloom filter, a simple construction with difficult probabilistic analysis, which may have independent interest as a privacy-preserving randomized count sketch data structure. Compared to prior work on message flagging and tracing in end-to-end encrypted messaging, our novel contribution is the addition of a high threshold of multiple complaints that are needed before a message is audited or flagged.

We present and carefully analyze the probabilistic performance of our data structure, provide a precise security definition and proof, and then measure the accuracy and scalability of our scheme via experimentation.

View More Papers

Testability Tarpits: the Impact of Code Patterns on the...

Feras Al Kassar (SAP Security Research), Giulia Clerici (SAP Security Research), Luca Compagna (SAP Security Research), Davide Balzarotti (EURECOM), Fabian Yamaguchi (ShiftLeft Inc)

Read More

VISAS-Detecting GPS spoofing attacks against drones by analyzing camera's...

Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

insecure:// Vulnerability Analysis of URI Scheme Handling in Android...

Abdulla Aldoseri (University of Birmingham) and David Oswald (University of Birmingham)

Read More

PoF: Proof-of-Following for Vehicle Platoons

Ziqi Xu (University of Arizona), Jingcheng Li (University of Arizona), Yanjun Pan (University of Arizona), Loukas Lazos (University of Arizona, Tucson), Ming Li (University of Arizona, Tucson), Nirnimesh Ghose (University of Nebraska–Lincoln)

Read More