Linsheng Liu (George Washington University), Daniel S. Roche (United States Naval Academy), Austin Theriault (George Washington University), Arkady Yerukhimovich (George Washington University)

Recent years have seen a strong uptick in both the prevalence and real-world consequences of false information spread through online platforms. At the same time, encrypted messaging systems such as WhatsApp, Signal, and Telegram, are rapidly gaining popularity as users seek increased privacy in their digital lives.

The challenge we address is how to combat the viral spread of misinformation without compromising privacy. Our FACTS system tracks user complaints on messages obliviously, only revealing the message's contents and originator once sufficiently many complaints have been lodged.

Our system is *private*, meaning it does not reveal anything about the senders or contents of messages which have received few or no complaints; *secure*, meaning there is no way for a malicious user to evade the system or gain an outsized impact over the complaint system; and *scalable*, as we demonstrate excellent practical efficiency for up to millions of complaints per day.

Our main technical contribution is a new collaborative counting Bloom filter, a simple construction with difficult probabilistic analysis, which may have independent interest as a privacy-preserving randomized count sketch data structure. Compared to prior work on message flagging and tracing in end-to-end encrypted messaging, our novel contribution is the addition of a high threshold of multiple complaints that are needed before a message is audited or flagged.

We present and carefully analyze the probabilistic performance of our data structure, provide a precise security definition and proof, and then measure the accuracy and scalability of our scheme via experimentation.

View More Papers

Explainable AI in Cybersecurity Operations: Lessons Learned from xAI...

Megan Nyre-Yu (Sandia National Laboratories), Elizabeth S. Morris (Sandia National Laboratories), Blake Moss (Sandia National Laboratories), Charles Smutz (Sandia National Laboratories), Michael R. Smith (Sandia National Laboratories)

Read More

Testability Tarpits: the Impact of Code Patterns on the...

Feras Al Kassar (SAP Security Research), Giulia Clerici (SAP Security Research), Luca Compagna (SAP Security Research), Davide Balzarotti (EURECOM), Fabian Yamaguchi (ShiftLeft Inc)

Read More

Transparency Dictionaries with Succinct Proofs of Correct Operation

Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Read More