Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

AFL is one of the most used and extended fuzzing projects, adopted by industry and academic researchers alike. While the community agrees on AFL’s effectiveness at discovering new vulnerabilities and at its outstanding usability, many of its internal design choices remain untested to date. Security practitioners often clone the project “as-is” and use it as a starting point to develop new techniques, usually taking everything under the hood for granted. Instead, we believe that a careful analysis of the different parameters could help modern fuzzers to improve their performance and explain how each choice can affect the outcome of security testing, either negatively or positively.

The goal of this paper is to provide a comprehensive understanding of the internal mechanisms of AFL by performing experiments and comparing different metrics used to evaluate fuzzers. This will prove the efficacy of some patterns and clarify which aspects are instead outdated. To achieve this, we set up nine unique experiments that we carried out on the popular Fuzzbench platform. Each test focuses on a different aspect of AFL, ranging from its mutation approach to the feedback encoding scheme and the scheduling methodologies.

Our preliminary findings show that each design choice affects different factors of AFL. While some of these are positively correlated with the number of detected bugs or the target coverage, other features are related to usability and reliability. Most important, the outcome of our experiments will indicate which parts of AFL we should preserve in modern fuzzers.

View More Papers

Titanium: A Metadata-Hiding File-Sharing System with Malicious Security

Weikeng Chen (DZK/UC Berkeley), Thang Hoang (Virginia Tech), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila A. Yavuz (University of South Florida)

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna (Univ. Lille, CNRS, Inria), Antonin Durey (Univ. Lille, CNRS, Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (Univ. Lille, CNRS, Inria), Clémentine Maurice (Univ. Lille, CNRS, Inria), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille, CNRS, Inria / IUF), Walter Rudametkin…

Read More

DrawnApart: A Deep-Learning Enhanced GPU Fingerprinting Technique

Naif Mehanna (University of Lille, CNRS, Inria), Tomer Laor (Ben-Gurion University of the Negev)

Read More

FANDEMIC: Firmware Attack Construction and Deployment on Power Management...

Ryan Tsang (University of California, Davis), Doreen Joseph (University of California, Davis), Qiushi Wu (University of California, Davis), Soheil Salehi (University of California, Davis), Nadir Carreon (University of Arizona), Prasant Mohapatra (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More