Vincent Drury (IT-Security Research Group, RWTH Aachen University), Rene Roepke (Learning Technologies Research Group, RWTH Aachen University), Ulrik Schroeder (Learning Technologies Research Group, RWTH Aachen University), Ulrike Meyer (IT-Security Research Group, RWTH Aachen University)

Anti-phishing learning games are a promising approach to educate the general population about phishing, as they offer a scalable, motivational, and engaging environment for active learning. Existing games have been criticized for their limited game mechanics, which mostly require binary decisions to advance in the games, and for failing to consider the users’ familiarity with online services presented in the game. In this paper, we present the evaluation of two novel game prototypes that incorporate more complex game mechanics. The first game requires the classification of URLs into several different categories, thus giving additional insights into the player’s decision, while the second game addresses a different cognitive process by requiring the creation of new URLs. We compare the games with each other and with a baseline game which uses binary decisions similar to existing games. A user study with 133 participants shows, that while all three games lead to performance increases, none of the proposed game mechanics offer significant improvements over the baseline. However, we show that the analysis of the new games offers valuable insights into the players’ behavior and problems while playing the games, in particular with regards to different categories of phishing URLs. Furthermore, the user study shows that the participants were significantly better in classifying URLs of services they know than those they do not know. These results indicate, that the distinction between known and unknown services in phishing tests is important to gain a better understanding of the test results, and should be considered when designing and reproducing studies.

View More Papers

Forensic Analysis of Configuration-based Attacks

Muhammad Adil Inam (University of Illinois at Urbana-Champaign), Wajih Ul Hassan (University of Illinois at Urbana-Champaign), Ali Ahad (University of Virginia), Adam Bates (University of Illinois at Urbana-Champaign), Rashid Tahir (University of Prince Mugrin), Tianyin Xu (University of Illinois at Urbana-Champaign), Fareed Zaffar (LUMS)

Read More

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

SemperFi: Anti-spoofing GPS Receiver for UAVs

Harshad Sathaye (Northeastern University), Gerald LaMountain (Northeastern University), Pau Closas (Northeastern University), Aanjhan Ranganathan (Northeastern University)

Read More

Replication: Do We Snooze If We Can't Lose? Modelling...

Karoline Busse (University of Bonn); Dominik Wermke (Leibniz University Hannover); Sabrina Amft (University of Bonn); Sascha Fahl (Leibniz University Hannover); Emanuel von Zezschwitz, Matthew Smith (University of Bonn)

Read More