Jim Alves-Foss, Varsha Venugopal (University of Idaho)

The effectiveness of binary analysis tools and techniques is often measured with respect to how well they map to a ground truth. We have found that not all ground truths are created equal. This paper challenges the binary analysis community to take a long look at the concept of ground truth, to ensure that we are in agreement with definition(s) of ground truth, so that we can be confident in the evaluation of tools and techniques. This becomes even more important as we move to trained machine learning models, which are only as useful as the validity of the ground truth in the training.

View More Papers

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

Dinosaur Resurrection: PowerPC Binary Patching for Base Station Analysis

Uwe Muller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstadt)

Read More

Beyond the Bytes: Understanding the Limitations of Intrinsic Binary...

Peter Lafosse (Owner and Co-Founder of Vector 35 Inc.)

Read More