Jim Alves-Foss, Varsha Venugopal (University of Idaho)

The effectiveness of binary analysis tools and techniques is often measured with respect to how well they map to a ground truth. We have found that not all ground truths are created equal. This paper challenges the binary analysis community to take a long look at the concept of ground truth, to ensure that we are in agreement with definition(s) of ground truth, so that we can be confident in the evaluation of tools and techniques. This becomes even more important as we move to trained machine learning models, which are only as useful as the validity of the ground truth in the training.

View More Papers

The evolution of program analysis approaches in the era...

Alex Matrosov (CEO and Founder of Binarly Inc.)

Read More

It Doesn’t Have to Be So Hard: Efficient Symbolic...

Vaibhav Sharma (University of Minnesota), Navid Emamdoost (University of Minnesota), Seonmo Kim (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More

Trust and Privacy Expectations during Perilous Times of Contact...

Habiba Farzand (University of Glasgow), Florian Mathis (University of Glasgow), Karola Marky (University of Glasgow), Mohamed Khamis (University of Glasgow)

Read More