Jim Alves-Foss, Varsha Venugopal (University of Idaho)

The effectiveness of binary analysis tools and techniques is often measured with respect to how well they map to a ground truth. We have found that not all ground truths are created equal. This paper challenges the binary analysis community to take a long look at the concept of ground truth, to ensure that we are in agreement with definition(s) of ground truth, so that we can be confident in the evaluation of tools and techniques. This becomes even more important as we move to trained machine learning models, which are only as useful as the validity of the ground truth in the training.

View More Papers

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More

Uncovering Cross-Context Inconsistent Access Control Enforcement in Android

Hao Zhou (The Hong Kong Polytechnic University), Haoyu Wang (Beijing University of Posts and Telecommunications), Xiapu Luo (The Hong Kong Polytechnic University), Ting Chen (University of Electronic Science and Technology of China), Yajin Zhou (Zhejiang University), Ting Wang (Pennsylvania State University)

Read More

Evaluating Susceptibility of VPN Implementations to DoS Attacks Using...

Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Read More

Property Inference Attacks Against GANs

Junhao Zhou (Xi'an Jiaotong University), Yufei Chen (Xi'an Jiaotong University), Chao Shen (Xi'an Jiaotong University), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More