Zhisheng Hu (Baidu), Shengjian Guo (Baidu) and Kang Li (Baidu)

In this demo, we disclose a potential bug in the Tesla Full Self-Driving (FSD) software. A vulnerable FSD vehicle can be deterministically tricked to run a red light. Attackers can cause a victim vehicle to behave in such ways without tampering or interfering with any sensors or physically accessing the vehicle. We infer that such behavior is caused by Tesla FSD’s decision system failing to take latest perception signals once it enters a specific mode. We call such problematic behavior Pringles Syndrome. Our study on multiple other autonomous driving implementations shows that this failed state update is a common failure pattern that specially needs attentions in autonomous driving software tests and developments.

View More Papers

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More

A Study on Security and Privacy Practices in Danish...

Asmita Dalela (IT University of Copenhagen), Saverio Giallorenzo (Department of Computer Science and Engineering - University of Bologna), Oksana Kulyk (ITU Copenhagen), Jacopo Mauro (University of Southern Denmark), Elda Paja (IT University of Copenhagen)

Read More

WIP: Infrastructure-Aided Defense for Autonomous Driving Systems: Opportunities and...

Yunpeng Luo (UC Irvine), Ningfei Wang (UC Irvine), Bo Yu (PerceptIn), Shaoshan Liu (PerceptIn) and Qi Alfred Chen (UC Irvine)

Read More

CFInsight: A Comprehensive Metric for CFI Policies

Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More