Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

With emerging vision-based autonomous driving (AD) systems, it becomes increasingly important to have datasets to evaluate their correct operation and identify potential security flaws. However, when collecting a large amount of data, either human experts manually label potentially hundreds of thousands of image frames or systems use machine learning algorithms to label the data, with the hope that the accuracy is good enough for the application. This can become especially problematic when tracking the context information, such as the location and velocity of surrounding objects, useful to evaluate the correctness and improve stability and robustness of the AD systems.

View More Papers

What the Fork? Finding and Analyzing Malware in GitHub...

Alan Cao (New York University) and Brendan Dolan-Gavitt (New York University)

Read More

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

(Short) Object Removal Attacks on LiDAR-based 3D Object Detectors

Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

Read More

Demo #7: A Simulator for Cooperative and Automated Driving...

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm Technologies Inc), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi (Telecom Paris - Institut Polytechnique de Paris), Wafa Ben Jaballah (Thales) and Jonathan Petit (Qualcomm Technologies Inc)

Read More