Barak Davidovich (Ben-Gurion University of the Negev), Ben Nassi (Ben-Gurion University of the Negev) and Yuval Elovici (Ben-Gurion University of the Negev)

In this study, we propose an innovative method for the real-time detection of GPS spoofing attacks targeting drones, based on the video stream captured by a drone’s camera. The proposed method collects frames from the video stream and their location (GPS); by calculating the correlation between each frame, our method can detect a GPS spoofing on a drone. We first analyze the performance of the suggested method in a controlled environment by conducting experiments on a flight simulator that we developed. Then, we analyze its performance in the real world using a DJI drone. Our method can provide different levels of security against GPS spoofing attacks, depending on the detection interval required; for example, it can provide a high level of security to a drone flying at an altitude of 50-100 meters over an urban area at an average speed of 4 km/h in conditions of low ambient light; in this scenario, the proposed method can provide a level of security that detects any GPS spoofing attack in which the spoofed location is a distance of 1-4 meters (an average of 2.5 meters) from the real location.

View More Papers

Shipping security at scale in the Chrome browser

Adriana Porter Felt (Director of Engineering for Chrome)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Demo #9: Dynamic Time Warping as a Tool for...

Mars Rayno (Colorado State University) and Jeremy Daily (Colorado State University)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More