Mulong Luo (Cornell University) and G. Edward Suh (Cornell University)

Effective coordination of sensor inputs requires correct timestamping of the sensor data for robotic vehicles. Though the existing trusted execution environment (TEE) can prevent direct changes to timestamp values from a clock or while stored in memory by an adversary, timestamp integrity can still be compromised by an interrupt between sensor and timestamp reads. We analytically and experimentally evaluate how timestamp integrity violations affect localization of robotic vehicles. The results indicate that the interrupt attack can cause significant errors in localization, which threatens vehicle safety, and need to be prevented with additional countermeasures.

View More Papers

Fuzzing Configurations of Program Options

Zenong Zhang (University of Texas at Dallas), George Klees (University of Maryland), Eric Wang (Poolesville High School), Michael Hicks (University of Maryland), Shiyi Wei (University of Texas at Dallas)

Read More

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

Repttack: Exploiting Cloud Schedulers to Guide Co-Location Attacks

Chongzhou Fang (University of California, Davis), Han Wang (University of California, Davis), Najmeh Nazari (University of California, Davis), Behnam Omidi (George Mason University), Avesta Sasan (University of California, Davis), Khaled N. Khasawneh (George Mason University), Setareh Rafatirad (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More