Bo Yang (Zhejiang University), Yushi Cheng (Tsinghua University), Zizhi Jin (Zhejiang University), Xiaoyu Ji (Zhejiang University) and Wenyuan Xu (Zhejiang University)

Due to the booming of autonomous driving, in which LiDAR plays a critical role in the task of environment perception, its reliability issues have drawn much attention recently. LiDARs usually utilize deep neural models for 3D point cloud perception, which have been demonstrated to be vulnerable to imperceptible adversarial examples. However, prior work usually manipulates point clouds in the digital world without considering the physical working principle of the actual LiDAR. As a result, the generated adversarial point clouds may be realizable and effective in simulation but cannot be perceived by physical LiDARs. In this work, we introduce the physical principle of LiDARs and propose a new method for generating 3D adversarial point clouds in accord with it that can achieve two types of spoofing attacks: object hiding and object creating. We also evaluate the effectiveness of the proposed method with two 3D object detectors on the KITTI vision benchmark.

View More Papers

EqualNet: A Secure and Practical Defense for Long-term Network...

Jinwoo Kim (KAIST), Eduard Marin (Telefonica Research (Spain)), Mauro Conti (University of Padua), Seungwon Shin (KAIST)

Read More

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More

Log4shell: Redefining the Web Attack Surface

Douglas Everson (Clemson University), Long Cheng (Clemson University), and Zhenkai Zhang (Clemson University)

Read More

Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh (Université Paris Saclay), Marwan Nour (Université Paris Saclay), Michaël Marcozzi (Université Paris Saclay), Sébastien Bardin (Université Paris Saclay)

Read More