Yunpeng Luo (UC Irvine), Ningfei Wang (UC Irvine), Bo Yu (PerceptIn), Shaoshan Liu (PerceptIn) and Qi Alfred Chen (UC Irvine)

Autonomous Driving (AD) is a rapidly developing technology and its security issues have been studied by various recent research works. With the growing interest and investment in leveraging intelligent infrastructure support for practical AD, AD system may have new opportunities to defend against existing AD attacks. In this paper, we are the first t o systematically explore such a new AD security design space leveraging emerging infrastructure-side support, which we call Infrastructure-Aided Autonomous Driving Defense (I-A2D2). We first taxonomize existing AD attacks based on infrastructure-side capabilities, and then analyze potential I-A2D2 design opportunities and requirements. We further discuss the potential design challenges for these I-A2D2 design directions to be effective in practice.

View More Papers

NC-Max: Breaking the Security-Performance Tradeoff in Nakamoto Consensus

Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

Read More

Transparency Dictionaries with Succinct Proofs of Correct Operation

Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Read More

Physical Layer Data Manipulation Attacks on the CAN Bus

Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

Read More