Aiping Xiong (Pennsylvania State University), Zekun Cai (Pennsylvania State University) and Tianhao Wang (University of Virginia)

Individuals’ interactions with connected autonomous vehicles (CAVs) involve sharing various data in a ubiquitous manner, raising novel challenges for privacy. The human factors of privacy must first be understood to promote consumers’ acceptance of CAVs. To inform the privacy research in the context of CAVs, we discuss how the emerging technologies development of CAV poses new privacy challenges for drivers and passengers. We argue that the privacy design of CAVs should adopt a user-centered approach, which integrates human factors into the development and deployment of privacy-enhancing technologies, such as differential privacy.

View More Papers

datAFLow: Towards a Data-Flow-Guided Fuzzer

Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Read More

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More