Jian Cui (Indiana University Bloomington)

Twitter has been recognized as a highly valuable source for security practitioners, offering timely updates on breaking events and threat analyses. Current methods for automating event detection on Twitter rely on standard text embedding techniques to cluster tweets. However, these methods are not effective as standard text embeddings are not specifically designed for clustering security-related tweets. To tackle this, our paper introduces a novel method for creating custom embeddings that improve the accuracy and comprehensiveness of security event detection on Twitter. This method integrates patterns of security-related entity sharing between tweets into the embedding process, resulting in higher-quality embeddings that significantly enhance precision and coverage in identifying security events.

View More Papers

Private Aggregate Queries to Untrusted Databases

Syed Mahbub Hafiz (University of California, Davis), Chitrabhanu Gupta (University of California, Davis), Warren Wnuck (University of California, Davis), Brijesh Vora (University of California, Davis), Chen-Nee Chuah (University of California, Davis)

Read More

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More

Threats Against Satellite Ground Infrastructure: A retrospective analysis of...

Jessie Hamill-Stewart (University of Bristol and University of Bath), Awais Rashid (University of Bristol)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More