Ryan Tsang (University of California, Davis), Doreen Joseph (University of California, Davis), Qiushi Wu (University of California, Davis), Soheil Salehi (University of California, Davis), Nadir Carreon (University of Arizona), Prasant Mohapatra (University of California, Davis), Houman Homayoun (University of California, Davis)

Supply chains have become a pillar of our economic world, and they have brought tremendous advantages to both enterprises and users. These networks consist of companies and suppliers with the goal of reducing costs and production time by offloading various stages of the production process to third party foundries. Although globalized supply chains offer many advantages, they are also vulnerable to attacks at many different points along the pipeline. For Internet-of-Things (IoT) devices, this problem is exacerbated by firmware vulnerabilities, which influence the low-level control of the system hardware. Moreover, according to the National Vulnerability Database (NVD) the number of firmware vulnerabilities within IoT devices is rapidly increasing every year, making such firmware vulnerabilities a cause for growing concern and magnifying the need to address emerging firmware vulnerabilities.
In this paper we attempt to define and expand upon a class of firmware vulnerability that is characterized by the malicious configuration of power management integrated circuits (PMIC). We propose a firmware attack construction and deployment on power management IC (FANDEMIC) that involves reverse engineering bare-metal IoT firmware binaries and identifying the functions that interact with its PMIC. We demonstrate the possibility of directly altering the binary to deliberately misconfigure the PMIC such that supply line voltages are altered, which could result in a variety of problems with the device. We propose a workflow to reverse engineer the binary, using Ghidra and Python scripting, and provide two simple, but novel function matching algorithms. Furthermore, we highlight and discuss the potential aforementioned consequences of PMIC attacks, in particular, battery degradation and failure, accelerated aging effects, and sensor data corruption. As a proof of concept we implement the proposed attack on an nRF52 microcontroller and a MAX20303 PMIC to demonstrate sensor data corruption. Finally, we discuss possible mitigation techniques, which include binary auditing and secure firmware updates.

View More Papers

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More

Demo #7: A Simulator for Cooperative and Automated Driving...

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm Technologies Inc), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi (Telecom Paris - Institut Polytechnique de Paris), Wafa Ben Jaballah (Thales) and Jonathan Petit (Qualcomm Technologies Inc)

Read More