Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Virtual faces are crucial content in the metaverse. Recently, attempts have been made to generate virtual faces for privacy protection. Nevertheless, these virtual faces either permanently remove the identifiable information or map the original identity into a virtual one, which loses the original identity forever. In this study, we first attempt to address the conflict between privacy and identifiability in virtual faces, where a key-driven face anonymization and authentication recognition (KFAAR) framework is proposed. Concretely, the KFAAR framework consists of a head posture-preserving virtual face generation (HPVFG) module and a key-controllable virtual face authentication (KVFA) module. The HPVFG module uses a user key to project the latent vector of the original face into a virtual one. Then it maps the virtual vectors to obtain an extended encoding, based on which the virtual face is generated. By simultaneously adding a head posture and facial expression correction module, the virtual face has the same head posture and facial expression as the original face. During the authentication, we propose a KVFA module to directly recognize the virtual faces using the correct user key, which can obtain the original identity without exposing the original face image. We also propose a multi-task learning objective to train HPVFG and KVFA. Extensive experiments demonstrate the advantages of the proposed HPVFG and KVFA modules, which effectively achieve both facial anonymity and identifiability.

View More Papers

Duumviri: Detecting Trackers and Mixed Trackers with a Breakage...

He Shuang (University of Toronto), Lianying Zhao (Carleton University and University of Toronto), David Lie (University of Toronto)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Incorporating Gradients to Rules: Towards Lightweight, Adaptive Provenance-based Intrusion...

Lingzhi Wang (Northwestern University), Xiangmin Shen (Northwestern University), Weijian Li (Northwestern University), Zhenyuan LI (Zhejiang University), R. Sekar (Stony Brook University), Han Liu (Northwestern University), Yan Chen (Northwestern University)

Read More

“Where Are We On Cyber?” – A Qualitative Study...

Jens Christian Opdenbusch (Ruhr University Bochum), Jonas Hielscher (Ruhr University Bochum), M. Angela Sasse (Ruhr University Bochum, University College London)

Read More