Stijn Pletinckx (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Reverse proxy servers play a critical role in optimizing Internet services, offering benefits ranging from load balancing to Denial of Service (DoS) protection. A known shortcoming of such proxies is that the backend server becomes oblivious to the IP address of the client who initiated the connection since all requests are forwarded by the proxy server. For HTTP, this issue is trivially solved by the X-Forwarded-For header, which allows the proxy server to pass to the backend server the IP address of the client that originated the request. Unfortunately, no such equivalent exists for many other protocols. To solve this issue, HAProxy created the PROXY protocol, which communicates client information from a proxy server to a backend server at a lower level in the network stack (Layer 4), making it protocol-agnostic.
In this work, we are the first to study the use of the PROXY protocol at Internet scale and investigate the security impact of its misconfigurations. We launched a measurement study on the full IPv4 address range and found that, over HTTP, more than 170,000 hosts accept PROXY protocol data from arbitrary sources. We demonstrate how to abuse this protocol to bypass on-path proxies (and their protections) and leak sensitive information from backend infrastructures. We discovered over 10,000 servers that are vulnerable to an access bypass, triggered by injecting a (spoofed) PROXY protocol header. Using this technique, we obtained access to over 500 internal servers providing control over IoT monitoring platforms and smart home automation devices, allowing us to, for example, regulate remote controlled window blinds or control security cameras and alarm systems. Beyond HTTP, we demonstrate how the PROXY protocol can be used to turn over 350 SMTP servers into open relays, enabling an attacker to send arbitrary emails from any email address. In sum, our study exposes how PROXY protocol misconfigurations lead to severe security issues that affect multiple protocols prominently used in the wild.

View More Papers

Ctrl+Alt+Deceive: Quantifying User Exposure to Online Scams

Platon Kotzias (Norton Research Group, BforeAI), Michalis Pachilakis (Norton Research Group, Computer Science Department University of Crete), Javier Aldana Iuit (Norton Research Group), Juan Caballero (IMDEA Software Institute), Iskander Sanchez-Rola (Norton Research Group), Leyla Bilge (Norton Research Group)

Read More

LeoCommon – A Ground Station Observatory Network for LEO...

Eric Jedermann, Martin Böh (University of Kaiserslautern), Martin Strohmeier (armasuisse Science & Technology), Vincent Lenders (Cyber-Defence Campus, armasuisse Science & Technology), Jens Schmitt (University of Kaiserslautern)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More