Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

In 2016, law enforcement dismantled the infrastructure of the Avalanche bulletproof hosting service, the largest takedown of a cybercrime operation so far. The malware families supported by Avalanche use Domain Generation Algorithms (DGAs) to generate random domain names for controlling their botnets. The takedown proactively targets these presumably malicious domains; however, as coincidental collisions with legitimate domains are possible, investigators must first classify domains to prevent undesirable harm to website owners and botnet victims.

The constraints of this real-world takedown (proactive decisions without access to malware activity, no bulk patterns and no active connections) mean that approaches from the state of the art cannot be applied. The problem of classifying thousands of registered DGA domain names therefore required an extensive, painstaking manual effort by law enforcement investigators. To significantly reduce this effort without compromising correctness, we develop a model that automates the classification. Through a synergetic approach, we achieve an accuracy of 97.6% with ground truth from the 2017 and 2018 Avalanche takedowns; for the 2019 takedown, this translates into a reduction of 76.9% in manual investigation effort. Furthermore, we interpret the model to provide investigators with insights into how benign and malicious domains differ in behavior, which features and data sources are most important, and how the model can be applied according to the practical requirements of a real-world takedown.

View More Papers

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

Snappy: Fast On-chain Payments with Practical Collaterals

Vasilios Mavroudis (University College London), Karl Wüst (ETH Zurich), Aritra Dhar (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

Towards Plausible Graph Anonymization

Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More