Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

The FIDO2 protocol aims to strengthen or replace password authentication using public-key cryptography. FIDO2 has primarily focused on defending against attacks from afar by remote attackers that compromise a password or attempt to phish the user. In this paper, we explore threats from local attacks on FIDO2 that have received less attention---a malicious browser extension or cross-site scripting (XSS), and attackers gaining physical access to an HSK. Our systematic analysis of current implementations of FIDO2 reveals four underlying flaws, and we demonstrate the feasibility of seven attacks that exploit those flaws. The flaws include (1) Lack of confidentiality/integrity of FIDO2 messages accessible to browser extensions, (2) Broken clone detection algorithm, (3) Potential for user misunderstanding from social engineering and notification/error messages, and (4) Cookie life cycle. We build malicious browser extensions and demonstrate the attacks on ten popular web servers that use FIDO2. We also show that many browser extensions have sufficient permissions to conduct the attacks if they were compromised. A static and dynamic analysis of current browser extensions finds no evidence of the attacks in the wild. We conducted two user studies confirming that participants do not detect the attacks with current error messages, email notifications, and UX responses to the attacks. We provide an improved clone detection algorithm and recommendations for relying parties that detect or prevent some of the attacks.

View More Papers

LDR: Secure and Efficient Linux Driver Runtime for Embedded...

Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Read More

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More

Beyond the Surface: Uncovering the Unprotected Components of Android...

Hao Zhou (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Chenxiong Qian (University of Hong Kong), Xiapu Luo (The Hong Kong Polytechnic University), Haipeng Cai (Washington State University), Chao Zhang (Tsinghua University)

Read More

QUACK: Hindering Deserialization Attacks via Static Duck Typing

Yaniv David (Columbia University), Neophytos Christou (Brown University), Andreas D. Kellas (Columbia University), Vasileios P. Kemerlis (Brown University), Junfeng Yang (Columbia University)

Read More