Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Industrial Control Systems (ICS) consisting of integrated hardware and software components designed to monitor and control a variety of industrial processes, are typically deployed in critical infrastructures such as water treatment plants, power grids and gas pipelines. Unlike conventional IT systems, the consequences of deviations from normal operation in ICS have the potential to cause significant physical damage to equipment, the environment and even human life. The active monitoring of invariant rules that define the physical conditions that must be maintained for the normal operation of ICS provides a means to improve the security and dependability of such systems by which early detection of anomalous system states may be achieved, allowing for timely mitigating actions -- such as fault checking, system shutdown -- to be taken. Generally, invariant rules are pre-defined by system engineers during the design phase of a given ICS build. However, this manually intensive process is costly, error-prone and, in typically complex systems, sub-optimal. In this paper we propose a novel framework that is designed to systematically generate invariant rules from information contained within ICS operational data logs, using a combination of several machine learning and data mining techniques. The effectiveness of our approach is demonstrated by experiments on two real world ICS testbeds: a water distribution system and a water treatment plant. We show that sets of invariant rules, far larger than those defined manually, can be successfully derived by our framework and that they may be used to deliver significant improvements in anomaly detection compared with the invariant rules defined by system engineers as well as the commonly used residual error-based anomaly detection model for ICS.

View More Papers

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

ICSREF: A Framework for Automated Reverse Engineering of Industrial...

Anastasis Keliris (NYU), Michail Maniatakos (NYU Abu Dhabi)

Read More

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

Kimia Tajik (Oregon State University), Akshith Gunasekaran (Oregon State University), Rhea Dutta (Cornell University), Brandon Ellis (Oregon State University), Rakesh B. Bobba (Oregon State University), Mike Rosulek (Oregon State University), Charles V. Wright (Portland State University), Wu-Chi Feng (Portland State University)

Read More