Bingsheng Zhang (Lancaster University), Roman Oliynykov (IOHK Ltd.), Hamed Balogun (Lancaster University)

A treasury system is a community-controlled and decentralized collaborative decision-making mechanism for sustainable funding of blockchain development and maintenance. During each treasury period, project proposals are submitted, discussed, and voted for; top-ranked projects are funded from the treasury. The Dash governance system is a real-world example of such kind of systems. In this work, we, for the first time, provide a rigorous study of the treasury system. We modelled, designed, and implemented a provably secure treasury system that is compatible with most existing blockchain infrastructures, such as Bitcoin, Ethereum, etc. More specifically, the proposed treasury system supports liquid democracy/delegative voting for better collaborative intelligence. Namely, the stake holders can either vote directly on the proposed projects or delegate their votes to experts. Its core component is a distributed universally composable secure end-to-end verifiable voting protocol. The integrity of the treasury voting decisions is guaranteed even when all the voting committee members are corrupted. To further improve efficiency, we proposed the world’s first honest verifier zero-knowledge proof for unit vector encryption with logarithmic size communication. This partial result may be of independent interest to other cryptographic protocols. A pilot system is implemented in Scala over the Scorex 2.0 framework, and its benchmark results indicate that the proposed system can support tens of thousands of treasury participants with high efficiency.

View More Papers

ML-Leaks: Model and Data Independent Membership Inference Attacks and...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Mario Fritz (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

One Engine To Serve 'em All: Inferring Taint Rules...

Zheng Leong Chua (National University of Singapore), Yanhao Wang (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences), Teodora Baluta (National University of Singapore), Prateek Saxena (National University of Singapore), Zhenkai Liang (National University of Singapore), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences)

Read More

We Value Your Privacy ... Now Take Some Cookies:...

Martin Degeling (Ruhr-Universität Bochum), Christine Utz (Ruhr-Universität Bochum), Christopher Lentzsch (Ruhr-Universität Bochum), Henry Hosseini (Ruhr-Universität Bochum), Florian Schaub (University of Michigan), Thorsten Holz (Ruhr-Universität Bochum)

Read More

Constructing an Adversary Solver for Equihash

Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Read More