Ilkan Esiyok (CISPA Helmholtz Center for Information Security), Pascal Berrang (University of Birmingham & Nimiq), Katriel Cohn-Gordon (Meta), Robert Künnemann (CISPA Helmholtz Center for Information Security)

The Internet is a major distribution platform for web applications, but there are no effective transparency and audit mechanisms in place for the web. Due to the ephemeral nature of web applications, a client visiting a website has no guarantee that the code it receives today is the same as yesterday, or the same as other visitors receive. Despite advances in web security, it is thus challenging to audit web applications before they are rendered in the browser. We propose Accountable JS, a browser extension and opt-in protocol for accountable delivery of active content on a web page. We prototype our protocol, formally model its security properties with the Tamarin Prover, and evaluate its compatibility and performance impact with case studies including WhatsApp Web, AdSense and Nimiq. Accountability is beginning to be deployed at scale, with Meta’s recent announcement of Code Verify available to all 2 billion WhatsApp users, but there has been little formal analysis of such protocols. We formally model Code Verify using the Tamarin Prover and compare its properties to our Accountable JS protocol. We also compare Code Verify’s and Accountable JS extension's performance impacts on WhatsApp Web.

View More Papers

Cybersecurity of COSPAS-SARSAT and EPIRB: threat and attacker models,...

Andrei Costin, Hannu Turtiainen, Syed Khandkher and Timo Hamalainen (Faculty of Information Technology, University of Jyvaskyla, Finland) Presenter: Andrei Costin

Read More

Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards...

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Read More

BlockScope: Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain...

Xiao Yi (The Chinese University of Hong Kong), Yuzhou Fang (The Chinese University of Hong Kong), Daoyuan Wu (The Chinese University of Hong Kong), Lingxiao Jiang (Singapore Management University)

Read More

REDsec: Running Encrypted Discretized Neural Networks in Seconds

Lars Wolfgang Folkerts (University of Delaware), Charles Gouert (University of Delaware), Nektarios Georgios Tsoutsos (University of Delaware)

Read More