Lea Schönherr (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Steffen Zeiler (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Dorothea Kolossa (Ruhr University Bochum)

Voice interfaces are becoming accepted widely as input methods for a diverse set of devices. This development is driven by rapid improvements in automatic speech recognition (ASR), which now performs on par with human listening in many tasks. These improvements base on an ongoing evolution of deep neural networks (DNNs) as the computational core of ASR. However, recent research results show that DNNs are vulnerable to adversarial perturbations, which allow attackers to force the transcription into a malicious output.

In this paper, we introduce a new type of adversarial examples based on *psychoacoustic hiding*. Our attack exploits the characteristics of DNN-based ASR systems, where we extend the original analysis procedure by an additional backpropagation step. We use this backpropagation to learn the degrees of freedom for the adversarial perturbation of the input signal, i.e., we apply a psychoacoustic model and manipulate the acoustic signal below the thresholds of human perception. To further minimize perceptibility of the perturbations, we use forced alignment to find the best fitting temporal alignment between the original audio sample and the malicious target transcription. These extensions allow us to embed an arbitrary audio input with a malicious voice command that is then transcribed by the ASR system, with the audio signal remaining barely distinguishable from the original signal. In an experimental evaluation, we attack the state-of-the-art speech recognition system *Kaldi* and determine the best performing parameter and analysis setup for different types of input. Our results show that we are successful in up to 98% of cases with a computational effort of fewer than two minutes for a ten-second audio file. Based on user studies, we found that none of our target transcriptions were audible to human listeners, who still understand the original speech content with unchanged accuracy.

View More Papers

UWB with Pulse Reordering: Securing Ranging against Relay and...

Mridula Singh (ETH Zurich, Switzerland), Patrick Leu (ETH Zurich, Switzerland), Srdjan Capkun (ETH Zurich, Switzerland)

Read More

Constructing an Adversary Solver for Equihash

Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Read More

Countering Malicious Processes with Process-DNS Association

Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Read More

Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints

Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Read More