Christoph Hagen (University of Würzburg), Christian Weinert (TU Darmstadt), Christoph Sendner (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Thomas Schneider (TU Darmstadt)

Contact discovery allows users of mobile messengers to conveniently connect with people in their address book. In this work, we demonstrate that severe privacy issues exist in currently deployed contact discovery methods.

Our study of three popular mobile messengers (WhatsApp, Signal, and Telegram) shows that, contrary to expectations, large-scale crawling attacks are (still) possible. Using an accurate database of mobile phone number prefixes and very few resources, we have queried 10% of US mobile phone numbers for WhatsApp and 100% for Signal. For Telegram we find that its API exposes a wide range of sensitive information, even about numbers not registered with the service. We present interesting (cross-messenger) usage statistics, which also reveal that very few users change the default privacy settings. Regarding mitigations, we propose novel techniques to significantly limit the feasibility of our crawling attacks, especially a new incremental contact discovery scheme that strictly improves over Signal's current approach.

Furthermore, we show that currently deployed hashing-based contact discovery protocols are severely broken by comparing three methods for efficient hash reversal of mobile phone numbers. For this, we also propose a significantly improved rainbow table construction for non-uniformly distributed inputs that is of independent interest.

View More Papers

Experimental Evaluation of a Binary-level Symbolic Analyzer for Spectre:...

Lesly-Ann Daniel (CEA List), Sébastien Bardin (CEA List, Université Paris-Saclay), Tamara Rezk (INRIA)

Read More

Awakening the Web's Sleeper Agents: Misusing Service Workers for...

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

On the Insecurity of SMS One-Time Password Messages against...

Zeyu Lei (Purdue University), Yuhong Nan (Purdue University), Yanick Fratantonio (Eurecom & Cisco Talos), Antonio Bianchi (Purdue University)

Read More

(Short) WIP: Deployability Improvement, Stealthiness User Study, and Safety...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More