Christoph Hagen (University of Würzburg), Christian Weinert (TU Darmstadt), Christoph Sendner (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Thomas Schneider (TU Darmstadt)

Contact discovery allows users of mobile messengers to conveniently connect with people in their address book. In this work, we demonstrate that severe privacy issues exist in currently deployed contact discovery methods.

Our study of three popular mobile messengers (WhatsApp, Signal, and Telegram) shows that, contrary to expectations, large-scale crawling attacks are (still) possible. Using an accurate database of mobile phone number prefixes and very few resources, we have queried 10% of US mobile phone numbers for WhatsApp and 100% for Signal. For Telegram we find that its API exposes a wide range of sensitive information, even about numbers not registered with the service. We present interesting (cross-messenger) usage statistics, which also reveal that very few users change the default privacy settings. Regarding mitigations, we propose novel techniques to significantly limit the feasibility of our crawling attacks, especially a new incremental contact discovery scheme that strictly improves over Signal's current approach.

Furthermore, we show that currently deployed hashing-based contact discovery protocols are severely broken by comparing three methods for efficient hash reversal of mobile phone numbers. For this, we also propose a significantly improved rainbow table construction for non-uniformly distributed inputs that is of independent interest.

View More Papers

Hey Alexa, is this Skill Safe?: Taking a Closer...

Christopher Lentzsch (Ruhr-Universität Bochum), Sheel Jayesh Shah (North Carolina State University), Benjamin Andow (Google), Martin Degeling (Ruhr-Universität Bochum), Anupam Das (North Carolina State University), William Enck (North Carolina State University)

Read More

Censored Planet: An Internet-wide, Longitudinal Censorship Observatory

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi (University of Michigan)

Read More

Google/Apple Exposure Notification Due Diligence

Douglas Leith and Stephen Farrell (Trinity College Dublin)

Read More

As Strong As Its Weakest Link: How to Break...

Kai Li (Syracuse University), Jiaqi Chen (Syracuse University), Xianghong Liu (Syracuse University), Yuzhe Tang (Syracuse University), XiaoFeng Wang (Indiana University Bloomington), Xiapu Luo (Hong Kong Polytechnic University)

Read More