Christoph Hagen (University of Würzburg), Christian Weinert (TU Darmstadt), Christoph Sendner (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Thomas Schneider (TU Darmstadt)

Contact discovery allows users of mobile messengers to conveniently connect with people in their address book. In this work, we demonstrate that severe privacy issues exist in currently deployed contact discovery methods.

Our study of three popular mobile messengers (WhatsApp, Signal, and Telegram) shows that, contrary to expectations, large-scale crawling attacks are (still) possible. Using an accurate database of mobile phone number prefixes and very few resources, we have queried 10% of US mobile phone numbers for WhatsApp and 100% for Signal. For Telegram we find that its API exposes a wide range of sensitive information, even about numbers not registered with the service. We present interesting (cross-messenger) usage statistics, which also reveal that very few users change the default privacy settings. Regarding mitigations, we propose novel techniques to significantly limit the feasibility of our crawling attacks, especially a new incremental contact discovery scheme that strictly improves over Signal's current approach.

Furthermore, we show that currently deployed hashing-based contact discovery protocols are severely broken by comparing three methods for efficient hash reversal of mobile phone numbers. For this, we also propose a significantly improved rainbow table construction for non-uniformly distributed inputs that is of independent interest.

View More Papers

Towards Understanding and Detecting Cyberbullying in Real-world Images

Nishant Vishwamitra (University at Buffalo), Hongxin Hu (University at Buffalo), Feng Luo (Clemson University), Long Cheng (Clemson University)

Read More

Evading Voltage-Based Intrusion Detection on Automotive CAN

Rohit Bhatia (Purdue University), Vireshwar Kumar (Indian Institute of Technology Delhi), Khaled Serag (Purdue University), Z. Berkay Celik (Purdue University), Mathias Payer (EPFL), Dongyan Xu (Purdue University)

Read More

The Abuser Inside Apps: Finding the Culprit Committing Mobile...

Joongyum Kim (KAIST), Jung-hwan Park (KAIST), Sooel Son (KAIST)

Read More

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More