Imani N. Sherman (University of Florida), Jasmine D. Bowers (University of Florida), Keith McNamara Jr. (University of Florida), Juan E. Gilbert (University of Florida), Jaime Ruiz (University of Florida), Patrick Traynor (University of Florida)

Robocalls are inundating phone users. These automated calls allow for attackers to reach massive audiences with scams ranging from credential hijacking to unnecessary IT support in a largely untraceable fashion. In response, many applications have been developed to alert mobile phone users of incoming robocalls. However, how well these applications communicate risk with their users is not well understood. In this paper, we identify common real-time security indicators used in the most popular anti-robocall applications. Using focus groups and user testing, we first identify which of these indicators most effectively alert users of danger. We then demonstrate that the most powerful indicators can reduce the likelihood that users will answer such calls by as much as 43%. Unfortunately, our evaluation also shows that attackers can eliminate the gains provided by such indicators using a small amount of target-specific information (e.g., a known phone number). In so doing, we demonstrate that anti-robocall indicators could benefit from significantly increased attention from the research community.

View More Papers

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

HYPER-CUBE: High-Dimensional Hypervisor Fuzzing

Sergej Schumilo (Ruhr-Universität Bochum), Cornelius Aschermann (Ruhr-Universität Bochum), Ali Abbasi (Ruhr-Universität Bochum), Simon Wörner (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More

SymTCP: Eluding Stateful Deep Packet Inspection with Automated Discrepancy...

Zhongjie Wang (University of California, Riverside), Shitong Zhu (University of California, Riverside), Yue Cao (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside), Kevin S. Chan (U.S. Army Research Lab), Tracy D. Braun (U.S. Army Research Lab)

Read More

When Match Fields Do Not Need to Match: Buffered...

Jiahao Cao (Tsinghua University; George Mason University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Qi Li (Tsinghua University), Guofei Gu (Texas A&M University), Mingwei Xu (Tsinghua University)

Read More