Gedare Bloom (University of Colorado Colorado Springs)

Best Paper Award Winner ($300 cash prize)!

The controller area network (CAN) is a high-value asset to defend and attack in automobiles. The bus-off attack exploits CAN’s fault confinement to force a victim electronic control unit (ECU) into the bus-off state, which prevents it from using the bus. Although pernicious, the bus-off attack has two distinct phases that are observable on the bus and allow the attack to be detected and prevented. In this paper we present WeepingCAN, a refinement of the bus-off attack that is stealthy and can escape detection. We evaluate WeepingCAN experimentally using realistic CAN benchmarks and find it succeeds in over 75% of attempts without exhibiting the detectable features of the original attack. We demonstrate WeepingCAN on a real vehicle.

View More Papers

PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University), Dongyan Xu (Purdue University)

Read More

Demo #3: Detecting Illicit Drone Video Filming Using Cryptanalysis

Ben Nassi, Raz Ben-Netanel (Ben-Gurion University of the Negev), Adi Shamir (Weizmann Institute of Science), and Yuval Elovic (Ben-Gurion University of the Negev)

Read More

POSEIDON: Privacy-Preserving Federated Neural Network Learning

Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

Read More