Hengyi Liang, Ruochen Jiao (Northwestern University), Takami Sato, Junjie Shen, Qi Alfred Chen (UC Irvine), and Qi Zhu (Northwestern University)

Best Short Paper Award Winner!

Machine learning techniques, particularly those based on deep neural networks (DNNs), are widely adopted in the development of advanced driver-assistance systems (ADAS) and autonomous vehicles. While providing significant improvement over traditional methods in average performance, the usage of DNNs also presents great challenges to system safety, especially given the uncertainty of the surrounding environment, the disturbance to system operations, and the current lack of methodologies for predicting DNN behavior. In particular, adversarial attacks to the sensing input may cause errors in systems’ perception of the environment and lead to system failure. However, existing works mainly focus on analyzing the impact of such attacks on the sensing and perception results and designing mitigation strategies accordingly. We argue that as system safety is ultimately determined by the actions it takes, it is essential to take an end-to-end approach and address adversarial attacks with the consideration of the entire ADAS or autonomous driving pipeline, from sensing and perception to planing, navigation and control. In this paper, we present our initial findings in quantitatively analyzing the impact of a type of adversarial attack (that leverages road patch) on system planning and control, and discuss some of the possible directions to systematically address such attack with an end-to-end view.

View More Papers

Demo #5: Securing Heavy Vehicle Diagnostics

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

XDA: Accurate, Robust Disassembly with Transfer Learning

Kexin Pei (Columbia University), Jonas Guan (University of Toronto), David Williams-King (Columbia University), Junfeng Yang (Columbia University), Suman Jana (Columbia University)

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More