Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London) Best Short Paper Award Runner-up!

LiDARs play a critical role in Autonomous Vehicles’ (AVs) perception and their safe operations. Recent works have demonstrated that it is possible to spoof LiDAR return signals to elicit fake objects. In this work we demonstrate how the same physical capabilities can be used to mount a new, even more dangerous class of attacks, namely Object Removal Attacks (ORAs). ORAs aim to force 3D object detectors to fail. We leverage the default setting of LiDARs that record a single return signal per direction to perturb point clouds in the region of interest (RoI) of 3D objects. By injecting illegitimate points behind the target object, we effectively shift points away from the target objects’ RoIs. Our initial results using a simple random point selection strategy show that the attack is effective in degrading the performance of commonly used 3D object detection models.

View More Papers

Effects of Precise and Imprecise Value-Set Analysis (VSA) Information...

Laura Matzen, Michelle A Leger, Geoffrey Reedy (Sandia National Laboratories)

Read More

Differential Training: A Generic Framework to Reduce Label Noises...

Jiayun Xu (Singapore Management University), Yingjiu Li (University of Oregon), Robert H. Deng (Singapore Management University)

Read More

Securing CAN Traffic on J1939 Networks

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

Why Do Programmers Do What They Do? A Theory...

Lavanya Sajwan, James Noble, Craig Anslow (Victoria University of Wellington), Robert Biddle (Carleton University)

Read More