Zhongyuan Hau, Kenneth Co, Soteris Demetriou, and Emil Lupu (Imperial College London)

Best Short Paper Award Runner-up!

LiDARs play a critical role in Autonomous Vehicles’ (AVs) perception and their safe operations. Recent works have demonstrated that it is possible to spoof LiDAR return signals to elicit fake objects. In this work we demonstrate how the same physical capabilities can be used to mount a new, even more dangerous class of attacks, namely Object Removal Attacks (ORAs). ORAs aim to force 3D object detectors to fail. We leverage the default setting of LiDARs that record a single return signal per direction to perturb point clouds in the region of interest (RoI) of 3D objects. By injecting illegitimate points behind the target object, we effectively shift points away from the target objects’ RoIs. Our initial results using a simple random point selection strategy show that the attack is effective in degrading the performance of commonly used 3D object detection models.

View More Papers

Demo #8: Identifying Drones Based on Visual Tokens

Ben Nassi (Ben-Gurion University of the Negev), Elad Feldman (Ben-Gurion University of the Negev), Aviel Levy (Ben-Gurion University of the Negev), Yaron Pirutin (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev), Ryusuke Masuoka (Fujitsu System Integration Laboratories) and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

IoTSafe: Enforcing Safety and Security Policy with Real IoT...

Wenbo Ding (Clemson University), Hongxin Hu (University at Buffalo), Long Cheng (Clemson University)

Read More

My Past Dictates my Present: Relevance, Exposure, and Influence...

Shujaat Mirza, Christina Pöpper (New York University)

Read More