Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Connected vehicle (CV) technologies enable data exchange between vehicles and transportation infrastructure. In a CV environment, traffic signal control systems receive CV trajectory data through vehicle-to-infrastructure (V2I) communications to make control decisions. Comparing with existing data collection methods (e.g., from loop-detectors), the CV trajectory data provide much richer information, and therefore have great potentials to improve the system performance by reducing total vehicle delay at signalized intersections. However, this connectivity might also bring cyber security concerns.

In this paper, we aim to investigate the security problem of CV-based traffic signal control (CV-TSC) systems. Specifically, we focus on evaluating the impact of falsified data attacks on the system performance. A black-box attack scenario, in which the control logic of a CV-TSC system is unavailable to attackers, is considered. A two-step attack model is constructed. In the first step, the attacker tries to learn the control logic using a surrogate model. Based on the surrogate model, in the second step, the attacker launches falsified data attacks to influence the control systems to make sub-optimal control decisions. In the case study, we apply the attack model to an existing CV-TSC system (i.e., I-SIG) and find intersection delay can be significantly increased. Finally, we discuss some promising defense directions.

View More Papers

Detecting Kernel Memory Leaks in Specialized Modules with Ownership...

Navid Emamdoost (University of Minnesota), Qiushi Wu (University of Minnesota), Kangjie Lu (University of Minnesota), Stephen McCamant (University of Minnesota)

Read More

V2X Security: Status and Open Challenges

Jonathan Petit (Director Of Engineering at Qualcomm Technologies) Dr. Jonathan Petit is Director of Engineering at Qualcomm Technologies, Inc., where he leads research in security of connected and automated vehicles (CAV). His team works on designing security solutions, but also develops tools for automotive penetration testing and builds prototypes. His recent work on misbehavior protection…

Read More

MINOS: A Lightweight Real-Time Cryptojacking Detection System

Faraz Naseem (Florida International University), Ahmet Aris (Florida International University), Leonardo Babun (Florida International University), Ege Tekiner (Florida International University), A. Selcuk Uluagac (Florida International University)

Read More

BaseSpec: Comparative Analysis of Baseband Software and Cellular Specifications...

Eunsoo Kim (KAIST), Dongkwan Kim (KAIST), CheolJun Park (KAIST), Insu Yun (KAIST), Yongdae Kim (KAIST)

Read More