Anas Alsoliman, Marco Levorato, and Qi Alfred Chen (UC Irvine)

In autonomous vehicle systems – whether ground or aerial – vehicles and infrastructure-level units communicate among each other continually to ensure safe and efficient autonomous operations. However, different attack scenarios might arise in such environments when a device in the network cannot physically pinpoint the actual transmitter of a certain message. For example, a compromised or a malicious vehicle could send a message with a fabricated location to appear as if it is in the location of another legitimate vehicle, or fabricate multiple messages with fake identities to alter the behavior of other vehicles/infrastructure units and cause traffic congestion or accidents. In this paper, we propose a Vision-Based Two-Factor Authentication and Localization Scheme for Autonomous Vehicles. The scheme leverages the vehicles’ light sources and cameras to establish an “Optical Camera Communication (OCC)” channel providing an auxiliary channel between vehicles to visually authenticate and localize the transmitter of messages that are sent over Radio Frequency (RF) channels. Additionally, we identify possible attacks against the proposed scheme as well as mitigation strategies.

View More Papers

Demo #1: Security of Multi-Sensor Fusion based Perception in...

Yulong Cao (University of Michigan), Ningfei Wang (UC, Irvine), Chaowei Xiao (Arizona State University), Dawei Yang (University of Michigan), Jin Fang (Baidu Research), Ruigang Yang (University of Michigan), Qi Alfred Chen (UC, Irvine), Mingyan Liu (University of Michigan) and Bo Li (University of Illinois at Urbana-Champaign)

Read More

Vehicle Lateral Motion Stability Under Wheel Lockup Attacks

Alireza Mohammadi (University of Michigan-Dearborn) and Hafiz Malik (University of Michigan-Dearborn)

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More