Emily Stark

Over the past decade, HTTPS adoption has risen dramatically. The Web PKI has shifted seismically, with browsers imposing new requirements on CAs and server operators. These shifts bring security and privacy improvements for end users, but they have often been driven by incompatible browser changes that break websites, causing frustration for end users as well as server operators. Security-positive breaking changes involve a plethora of choices. Should browsers roll out a change gradually, or rip the band-aid off and deploy it all at once? How do we advertise the change and motivate different players in the ecosystem to update configurations before they break? How do different types and amounts of breakage affect the user experience? And the meta-question: how do we approach such quandaries scientifically? Drawing from several case studies in the HTTPS ecosystem, I'll talk about the science of nudging an ecosystem: methods that the web browser community has developed, and lessons we've learned, for measuring how best to get millions of websites to improve security while minimizing the frustrations of incompatibility.

View More Papers

(Short) Spoofing Mobileye 630’s Video Camera Using a Projector

Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

PyPANDA: Taming the PANDAmonium of Whole System Dynamic Analysis

Luke Craig, Tim Leek (MIT Lincoln Laboratory), Andrew Fasano, Tiemoko Ballo (MIT Lincoln Laboratory, Northeastern University), Brendan Dolan-Gavitt (New York University), William Robertson (Northeastern University)

Read More

Refining Indirect Call Targets at the Binary Level

Sun Hyoung Kim (Penn State), Cong Sun (Xidian University), Dongrui Zeng (Penn State), Gang Tan (Penn State)

Read More

DorkPot: A Honeypot-based Analysis of Google Dorks

Florian Quinkert, Eduard Leonhardt, Thorsten Holz

Read More