Shubham Agarwal (Saarland University), Ben Stock (CISPA Helmholtz Center for Information Security)

[NOTE: The authors of this paper found critical errors in their methodology after it was presented and published at the workshop and asked to withdraw the paper from the proceedings. As such, in the current version, we mark the paper as incorrect to help future research not repeating the same mistakes. We hope the authors will repeat their measurements with a fixed approach in future.]

Browser extensions are add-ons that aim to enhance the functionality of native Web applications on the client side. They intend to provide a rich end-user experience by leveraging feature-rich privileged JavaScript APIs, otherwise inaccessible for native applications. However, numerous large-scale investigations have also reported that extensions often indulge in malicious activities by exploiting access to these privileged APIs such as ad injection, stealing privacy-sensitive data, user fingerprinting, spying user activities on the Web, and malware distribution. In this work, we instead focus on tampering with security headers. To that end, we analyze over 186K Chrome extensions, publicly available on the Chrome Web Store, to detect extensions that actively intercept requests and responses and tamper with their security headers by either injecting, dropping, or modifying them, thereby undermining the security guarantees that these headers typically provide. We propose an automated framework to detect such extensions by leveraging a combination of static and dynamic analysis techniques. We evaluate our proposed methodology by investigating the extensions’ behavior against Tranco Top 100 domains and domains targeted explicitly by the extensions under test and report our findings. We observe that over 2.4K extensions actively tamper with at least one security header, undermining the purpose of the server-delivered, client-enforced security headers.

View More Papers

Practical Non-Interactive Searchable Encryption with Forward and Backward Privacy

Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

Read More

BrowserFM: A Feature Model-based Approach to Browser Fingerprint Analysis

Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Read More

More than a Fair Share: Network Data Remanence Attacks...

Leila Rashidi (University of Calgary), Daniel Kostecki (Northeastern University), Alexander James (University of Calgary), Anthony Peterson (Northeastern University), Majid Ghaderi (University of Calgary), Samuel Jero (MIT Lincoln Laboratory), Cristina Nita-Rotaru (Northeastern University), Hamed Okhravi (MIT Lincoln Laboratory), Reihaneh Safavi-Naini (University of Calgary)

Read More

Improving Signal's Sealed Sender

Ian Martiny (University of Colorado Boulder), Gabriel Kaptchuk (Boston University), Adam Aviv (The George Washington University), Dan Roche (U.S. Naval Avademy), Eric Wustrow (University of Colorado Boulder)

Read More