Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Mutation analysis is an effective technique to evaluate a test suite adequacy in terms of revealing unforeseen bugs in software. Traditional source- or IR-level mutation analysis is not applicable to the software only available in binary format. This paper proposes a practical binary mutation analysis via binary rewriting, along with a rich set of mutation operators to represent more realistic bugs. We implemented our approach using two state-of-the-art binary rewriting tools and evaluated its effectiveness and scalability by applying them to SPEC CPU benchmarks. Our analysis revealed that the richer mutation operators contribute to generating more diverse mutants, which, compared to previous works leads to a higher mutation score for the test harness. We also conclude that the reassembleable disassembly rewriting yields better scalability in comparison to lifting to an intermediate representation and performing a full translation.

View More Papers

Panel – Experiment Artifact Sharing: Challenges and Solutions

Moderator: Laura Tinnel (SRI International) Panelists: Clémentine Maurice (CNRS, IRIS); Martin Rosso (Eindhoven University of Technology); Eric Eide (U. Utah)

Read More

Towards Measuring Supply Chain Attacks on Package Managers for...

Ruian Duan (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Ranjita Pai Kasturi (Georgia Institute of Technology), Ryan Elder (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

Google/Apple Exposure Notification Due Diligence

Douglas Leith and Stephen Farrell (Trinity College Dublin)

Read More