Dominik Maier, Lukas Seidel (TU Berlin)

Researchers spend hours, or even days, to understand a target well enough to harness it and get a feedback-guided fuzzer running. Once this is achieved, they rely on their fuzzer to find the right paths, maybe sampling the collected queue entries to see how well it performs. Their knowledge is of little help to the fuzzer, while the fuzzer’s behavior is largely a black box to the researcher. Enter JMPscare, providing deep insight into fuzzing queues. By highlighting unreached basic blocks across all queue items during fuzzing, JMPscare allows security researchers to understand the shortcomings of their fuzzer and helps to overcome them. JMPscare can analyze thousands of queue entries efficiently and highlight interesting roadblocks, socalled frontiers. This intel helps the human-in-the-loop to improve the fuzzer, mutator, and harness. Even complex bugs, hard to reach for a generalized fuzzer, hidden deep in the control flow of the target, can be covered in this way. Apart from a purely analytical view, its convenient built-in binary patching facilitates forced execution for subsequent fuzz runs. We demonstrate the benefit of JMPscare on the ARM-based MediaTek Baseband. With JMPscare we gain an in-depth understanding of larger parts of the firmware and find new targets in this RTOS. JMPscare simplifies further mutator, fuzzer, and instrumentation development.

View More Papers

Towards Defeating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully...

Gennaro Avitabile, Vincenzo Botta, Vincenzo Iovino, and Ivan Visconti (University of Salerno)

Read More

SquirRL: Automating Attack Analysis on Blockchain Incentive Mechanisms with...

Charlie Hou (CMU, IC3), Mingxun Zhou (Peking University), Yan Ji (Cornell Tech, IC3), Phil Daian (Cornell Tech, IC3), Florian Tramèr (Stanford University), Giulia Fanti (CMU, IC3), Ari Juels (Cornell Tech, IC3)

Read More

The evolution of program analysis approaches in the era...

Alex Matrosov (CEO and Founder of Binarly Inc.)

Read More

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More